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Abstract. On-line learning of both binary and continuous rules in an Ising space is studied.
Learning is achieved by using an artificial parameter, a weight vector �J , which is constrained to the
surface of a hypersphere (spherical constraint). In the case of a binary rule the generalization error
decays to zero super-exponentially as exp(−Cα2), where α is the number of examples divided
by N , the size of the input vector, and C > 0. Much faster learning is obtained in the case of
continuous activation functions where the generalization error decays as exp(−e|λ|α). The number
of steps required for perfect learning is estimated for both scenarios and compared with simulations.

1. Introduction

The application of methods of statistical mechanics to neural networks has yielded a wealth
of results. Analysing the prototype architecture, the perceptron produces several types of
behaviour such as phase transitions [1–3]. Here a learning algorithm for the one-layer network
in the case of Ising weights is presented. The goal is to find the student’s weight vector, �W S,
that minimizes the generalization error εg( �W S). The error is determined relative to a network

that generates for any input �ξ an output S, according to some rule, S = F(
�WT·�ξ√
N
). Here �WT

is the teacher’s weight vector and N is the size of the input. In the following we will discuss
both binary and continuous activation functions. These two types of activation function have
different characteristics from the on-line scenario point of view as well as that of the off-line
scenario. In the on-line scenario the learning in each step is only the latest from a sequence of
examples. Such an algorithm drastically reduces the computational effort compared with batch
learning and no explicit storage of a training set is required [4]. In the batch scenario an effort
is made to generalize according to a fixed set of αN patterns. The quantity that determines the
quality of the learning is the generalization error εg, which is calculated by taking the average
over the examples of the mismatch between teacher and student. It was shown that εg in the
case of perceptrons depends on the overlap between teacher and student, R = 1

N
�W S · �WT, and

the student norm, Q = 1
N

�W S · �W S.
The binary Ising model has been studied from the batch point of view [5–9]. In the case

of a perceptron an off-line learning procedure was proved to exhibit a first-order transition
from a state of poor learning to a state of perfect learning at α ∼ 1.25 [9]. However, there
was no practical algorithm showing this phase transition or even coming near to it. A new line
of research was established by Van den Broeck and Bouten [10] and was expanded later on
in [11]. They suggested a learning rule which is based on a clipping of a continuous perceptron.
Having an artificial continuous weight vector enables smooth learning; clipping it results in a
binary student �W S, whose components are close to those of the teacher. The algorithm does
not show a phase transition but nevertheless exhibits an exponential decay of the generalization
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error to zero. A first-order phase transition was found in batch learning of the continuous Ising
model as well [12]. All in all, off-line learning in Ising weight space of all transfer functions
that have been studied results in a first-order phase transition.

The clipping method has been used in a related field, dealing with capacity calculations.
The weight-space of the binary perceptron was examined by comparing it to a clipped
continuous network by Penney and Sherrington [13]. An example of further development
along this line is [14].

Turning to on-line learning, it has been shown [15] that in the case of on-line learning
in an Ising weight space there is no mapping that updates �W S in the following manner:
�W ′S = g( �W S, �ξ, S(�ξ, �WT)). The examples, �ξ , are drawn from a Gaussian distribution and the
N -dimensional weight vector �W S is constrained to take values in a discrete state space, LN .
Generalization is only possible if L is large enough, of the order of

√
N . Using an artificial

continuous vector (L → ∞) and clipping it enables generalization. Some aspects of on-line
learning in the case of a binary Ising perceptron have been studied as one can find in [16].

However, there are still some unsolved problems. First, learning was proved to improve in
the case of a binary rule; what happens in the case of a continuous rule? Secondly, the clipping
method was a ‘trick’ used independent of the updating of the student’s weights. The student
who wants to find out the teacher’s weights treats her as if she were continuous. The fact
that the teacher is binary is ignored during the updating procedure. The clipping is performed
only at the end or at any point along the way. What happens if the student tries to update his
continuous weights according to the output which is a result of his clipped weights? Only in
on-line learning can one change the learning algorithm during the learning itself. Perhaps this
is the preferred alternative. Thirdly, the analytical calculations are made in the case of infinite
N , although simulations are made in large but finite N . What are the finite-size effects?

The remainder of the paper is organized as follows. In section 2 we present an extensive
study of the qualities of on-line learning in an Ising space using a continuous artificial weight
vector. Although it has already been introduced, it was done only indirectly. We prefer to
start by introducing the clipping method using the on-line neural network language and then
proceed emphasizing the on-line aspects. In section 3 we demonstrate the results in the case
of a binary rule whereas in section 4 we present results in the case of a continuous rule. Non-
trivial scaling relations between the number of steps required for perfect learning in both cases
are introduced in section 5. Finally, in section 6 we summarize our results and present some
concluding remarks.

2. Clipping in the case of on-line learning

In order to learn the rule given by a binary perceptron, the student has to use an artificial vector,
a continuous one, �J , as was explained. The ith component of the clipped weight vector, �W S,
is determined from the ith component of �J according to

W S
i = sign(Ji). (1)

The learning algorithm for J may be any algorithm that has been used in the spherical
case [4, 17–20]. In general, in the clipping method one updates the continuous student, �J .
The generic form of the learning algorithm is

�Jµ+1 = �Jµ +
η√
N
f (Sµ, x

µ

J )
�ξµSµ (2)

which means that at each learning setµ, the current weight vector �Jµ is updated according to the
new example, �ξµ. Here xJ is the student’s local field, xJ ≡ 1

N
�J · �ξ . Assuming self-averaging
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properties for the following overlaps:

RJ ≡ 1

N
�J · �WT (3)

QJ ≡ 1

N
�J · �J (4)

and using equation (2), one can find a system of differential equations for the order parameters
RJ and QJ and the ‘continuous time’, α = µ

N
. The clipped order parameter, the one that

determines the learning curve, is given by the overlap of the Ising-student and the teacher,

ρ ≡ 1

N
�W S · �WT. (5)

The norm, Q ≡ 1
N

�W S · �W S, is obviously equal to unity by definition.
The order parameter, ρ, in the binary machine as a function of ρJ ≡ RJ√

QJ
was shown

in [11] to be

ρ(ρJ ) = erf


 1√

2

ρJ√
1 − ρ2

J


 . (6)

As was explained there, this relation was obtained on the grounds of the reasonable assumption
that the multiplication JiWi generally depends only on the order parameters RJ and QJ . We
will demonstrate that this assumption is no longer valid when one uses a training rule which
cannot be described by equation (2). In principle one can use the above mapping for any
result known in the continuous space and find the learning curve which describes the learning
procedure in the clipped machine. Yet, one can update the artificial vector according to the
quantities related to the binary student. The adaptation of the artificial continuous weight
vector according to the Ising weight vector’s local field, xW , is described in general by the
following equation:

�Jµ+1 = �Jµ +
η

N
f (Sµ, x

µ

W )
�ξµSµ. (7)

Note that the development of the weight vector �J and hence the development of RJ and QJ

directly depends on ρ. This means that equation (6) is no longer valid.
In order to be able to interpret the updating rule in equation (7) to a system of differential

equations one has to obtain the local field distribution, P(xW , yW , xJ , yJ |RJ ,QJ ). The
teacher’s local field in the continuous procedure is yJ ≡ 1

N
�WT · �ξ , and there is the obvious

relation P(yJ |yW ,A) = δ(yJ − yW) Using the simple relation for conditional probability, the
product rule, P(x, y|A) = P(x|y,A)P (y|A) and taking the one to one relation between RJ ,
QJ , and ρ, assembling everything, we have

P(x, y, xJ , yJ |RJ ,QJ ) = P(xJ , yJ |RJ ,QJ )P (x, y|ρ)δ(yJ − y)

P (yJ )
(8)

where we have eliminated the subscript W over the local fields’ symbols. The distribution of
the teacher’s local field is P(y) = exp(− 1

2y
2)/

√
2π and the conditional probabilities are

P(xJ , yJ |RJ ,QJ ) = 1

2π

1√
QJ − R2

J

exp

(
−1

2

x2 − 2RJxy + QJy
2

QJ − R2
J

)
(9)

P(x, y|ρ) = 1

2π

1√
1 − ρ2

exp

(
−1

2

x2 − 2ρxy + y2

1 − ρ2

)
. (10)
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Finding the equations of motion of the order parameters, RJ , QJ is performed in the
standard rigorous way, only now one has to average over the above-mentioned distribution
equation (8). The result will be two coupled equations, dRJ

dα = g(RJ ,QJ , ρ),
dQJ

dα =
g(RJ ,QJ , ρ). Since the development of the order parameters directly depends on ρ, it is
obvious that ρ must be not only a function of ρJ but a function of η as well. Hence, one cannot
find ρ(ρJ ,QJ ). Finding dρ

dα , an equation for the rate of change in ρ as a function of RJ , QJ

and η is impossible as well, since WS depends on J in a discontinuous manner, which makes
it impossible to obtain a continuous equation for dρ

dα .
Generally speaking, we found that learning according to the last procedure results in

a slower decay of the generalization error. We analysed this training rule from the on-line
point of view but of course one can use it in batch learning. However, updating according to
the continuous vector’s quantities (equation (2)) during most of the learning procedure and
turning to the last procedure (equation (7)) at the very last steps of the learning (where the
generalization error is small enough) ends in a faster decay. The ability to change the training
rule in the learning procedure in such a way is unique to on-line learning. The last result is
obtained (in the specific cases that we covered as written in section 5) in simulations for large
but finite N .

In order to describe the details we have to be more specific concerning the rule, F
(equations (11) and (28)), and the learning algorithm, f (equations (13) and (22)). All of
the above is described in the following paragraphs.

3. Binary rule

We analyse the learning procedure in the case of a binary rule,

S = sign(x) (11)

for a given local field, x. In this case the generalization error as a function of ρ is known to be

εg = 1

π
cos−1(ρ). (12)

Although it was shown that using the ‘expected stability’ algorithm that maximizes the
generalization gain per example leads to an upper bound for the generalization ability [17],
we choose to concentrate on the so-called AdaTron or relaxation learning algorithm. This
latter algorithm for zero stability, κ = 0, performs comparably well and unlike the ‘expected
stability’ algorithm does not require additional computations in the student network besides
the updating of its weights [4].

We update the artificial continuous weight vector, �J , similarly to the procedure of
equation (2), according to the above learning rule:

J
µ+1
i = J

µ

i − η√
N

( �Jµ · �ξµ√
N

)
ξ
µ

i θ

(
−

�Jµ · �ξµ√
N

S

)
. (13)

Hence, the equation of motion forρJ in the case of η = 1 results in the following expression [4]:

dρJ
dα

= − ρJ

2π
cos−1(ρJ ) +

1

π

(
1 − ρ2

J

2

)√
1 − ρ2

J . (14)

The solution of equation (14) only describes the curve of the artificial, continuous perceptron.
The transformation to the clipped order parameter, ρ, is given by equation (6) and the
generalization error is a function of ρ according to equation (12). This results in the Gaussian
decay of the generalization error as α → ∞

εg ∝ exp (− α2

9π2 )

α
1
2

. (15)
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Figure 1. Simulation results of ln εg versus the square of the number of steps is plotted in the case
of η = 1 (◦), η = 1.5 (•) and η = 2.5 (�). Curves are least-squares fits to numerical data. Error
bars are not visible at the scale of the figure. Dashed lines are the analytical slopes.

In comparison, the result for the Hebb learning [10] is

εg ∝ exp (− α
2π )

α
1
4

. (16)

The asymptotic decay is much slower here, reflecting the differences in the decay in the
spherical case [4].

The rate of convergence to zero error clearly depends on the learning rate, η. In order to
find the optimal learning rate, which results in a faster decay at large number of learning steps,
one needs to calculate the generalization error in the α → ∞ limit as a function of η,

εg ∝ exp

[
−α2η2(2 − 2

3η)
2

(4π)2

]
. (17)

The optimal learning rate is η = 1.5. We performed simulations in the case of
N = 1000, averaging each point over 100 samples. We demonstrated the super-Gaussian
behaviour in the following rates: η = 1, 1.5, 2. The slopes of the linear curves should be
−0.011,−0.014,−0.004 respectively. Figure 1 shows that there is good agreement between
the simulation results and the analytical predictions. In section 5 we discuss the finite-size
effects.

One can update the artificial continuous weight according to the quantities in the clipped
machine instead of those of the artificial one. The equations of motion in this case are calculated
in the same manner as explained in the previous chapter. The result is

dρJ
dα

= η

π


(1 − ρ2

J )

√
1 − ρ2

W√
QJ

− (1 − ρ2
J )

ρW√
QJ

cos−1(ρW )




− η2

2π

ρJ

QJ

[
cos−1(ρW )− ρW

√
1 − ρ2

W

]
(18)
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Figure 2. Simulation results of ln(1 −ρW ) and ln(1 −ρJ ) are plotted in the following three cases:
(1) updating according to the continuous quantities (ρW , �, ρJ , �). (2) Updating according to the
clipped vector quantities (ρW , ◦, ρJ , •). (3) Updating as in case (1) and alternating to update as in
case (2) as far as ρW > 0.9, (ρW (*) and ρJ (x)). ρJ according to the analytical results in the first
case is the dashed curve whereas ρW is the solid curve. All plots are versus ln(α).

dQJ

dα
= 2η

π
ρJ
√
QJ

[√
1 − ρ2

W − ρW cos−1(ρW )

]
+
η2

π

[
cos−1(ρW )− ρW

√
1 − ρ2

W

]
. (19)

The last equations constitute an incomplete set of differential equations. Therefore it is
impossible to obtain analytical curves from these equations in figure 2. Furnishing an equation
for dρ

dα is impossible, as was noted in section 2.
It is very clear that as long as ρW = 1 the right-hand side of both equations is zero, i.e.

this is a fixed point independent of theRJ ,QJ values. In other words, although the continuous
student did not learn the teacher quantities perfectly, the clipped one did. Using the knowledge
of binary weights in such a way at the initial stages of the learning procedure is too puzzling.
That is why more steps are needed using the latter algorithm then the former in order to obtain
perfect learning. However, the latter algorithm is found to be more economical in the very last
stages since instead of wasting information in the effort of minimizing the angle between the
continuous vector and the teacher, one only concentrates on the Ising student vector.

We made simulations with a learning rate η = 1, and N = 1000. Each point in the
simulation results presented in figure 2 is averaged over 100 samples. Initial conditions in all
carried simulations areRJ = ρW = 0,QJ = 0.5. Figure 2 shows simulation results according
to the last procedure, that ends in a slower convergence of the overlap ρW to 1. An example
of simulation results which updates the student according to the continuous quantities in the
initial stages of the learning procedure and alternates at the end of the learning to updating
according to the discrete quantities is given in figure 2. The analytical calculations according
to equations (6) and (13) are plotted in figure 2 as solid and dashed curves. Comparison is
made between the development of the ‘standard’ order parameter ρJ and the new one, ρ in each
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case. Learning in the case of updating the continuous vector according to its own quantities
results in a faster convergence then in the case of updating according to the clipped quantities.
Even faster learning is gained in the alternating case as one can see in the plot.

The well known result of a power law decay of the generalization error in the case of
continuous weights reappears as soon as a finite fraction, P , of the teacher weight vector’s
components are continuous. In that case

ρ(RJ ,QJ ) =
(1 − P)erf

(
1√
2

ρJ√
1−ρ2

j

)
+ PRJ

√
1 − P + PQJ

(20)

and the generalization error decreases to zero according to

εg ∼
√
PA

α
. (21)

Here A is characterized by the specific on-line learning algorithm: in the case of optimal
learning, for instance, its value is 0.88 [17]. Having a finite fraction 1−P of binary components
decreases the factor above while P = 0 results in an exponential decay.

4. Continuous rules

We now study the case of continuous perceptrons with Ising weights. As long as one uses
a continuous activation function, the generalization error decreases exponentially (see for
instance [18–20]). In order to learn a rule which is defined by a binary vector, we used a
spherical vector for the student weight vector, �J , and clipped it in order to have a binary student
weight vector �W S. The updating of the spherical student weight vector is done according to
the gradient descent method as usual:

�Jµ+1 = �Jµ − η√
N

∇ �J ε( �Jµ, �ξµ). (22)

The error ε( �Jµ, �ξµ) measures the deviation of the student from the teacher’s output for a
particular input �ξ . The generalization error of a student is defined as the averaged error

εg = 〈 1
2 [S( �J , �ξ)− S( �W, �ξ)]2〉�ξ . (23)

Note that in the case of continuous rules there is the same variety of possibilities as in the case
of binary rules, i.e. one can update the student weight vector according to a gradient of an error
which measures the deviation of the clipped student from the teacher’s output (as was shown
in equation (7)).

In general, one can show that the generalization error, εg, is explicitly dependent only
on the two order parameters RJ and QJ . The learning curves of the continuous version are
the same as if there were a rule defined by a continuous teacher (having a limitation of two
available values for the components is merely a special case of the spherical constraint). Under
the limitation of a small enough learning rate, η, RJ = 1, QJ = 1 is an attractive fixed point.
Linearizing the equations of motion around this fixed point results in the following general
form:

RJ = 1 − c1

det V
V22 exp (λ1α) +

c2

det V
V12 exp (λ2α) (24)

QJ = 1 +
c1

det V
V21 exp (λ1α)− c2

det V
V11 exp (λ2α). (25)

The two eigenvalues of V , λ1, λ2, are both negative. c1, c2 are some initial conditions
that are determined from the numerical solution of the equations of motion. Note that the
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last two equations depend on the actual transfer function in detail but not in principle. The
generalization error εg can be calculated as a function of ρW , the overlap between the binary
weight vectors. Since the local field distribution in the last case is the same as that in the
continuous case it results in the same function as that already given for the specific activation
function in the continuous space (only now Q = 1 by definition, and the term is a function not
of RJ but of ρ). Using the simple relation between ρ and ρJ , equation (6) [11] in the α → ∞
limit, results in the following form:

ρα→∞ = 1 −
√

1

πC0
exp

(
λ1α

2

)
exp (−C0e−λ1α). (26)

HereC0 ≡ det V
2c1(2V22+V21)

, λ1, λ2 are both negative and λ1 absolute value is assumed to be smaller
than λ2. Hence, the generalization error decays as

εg ∼ exp

(
λ1α

2

)
exp (−C0e−λ1α). (27)

To examine the analytical predictions we carried out simulations on perceptrons with a
‘sin’ activation function [20]

S = sin

( �WT · �ξ√
N

)
. (28)

In this case for η = 1, one obtains perfect learning, that means RJ = 1, QJ = 1 is
an attractive fixed point. Linearization around these fixed points ends with the following
quantities: λ1 = −0.3, λ2 = −0.7,

V =
(−1.03 0.51

0.05 −1

)
. (29)

The generalization error decreases to zero as

εg ∼ exp

(
−0.3α

2

)
exp (−C0e0.3α). (30)

When η = 0.1 perfect learning is still a fixed point, of course, but the eigenvalues are
much smaller, λ1 = −0.03, λ2 = −0.109. Simulation results are presented in figure 3. The
generalization error, εg, the teacher–continuous student overlap divided by the norm, ρJ , and
the teacher–student overlap, ρW , are plotted as a function of α. The initial conditions are
RJ = ρW = 0, QJ = 0.5. The simulations are made in the case of N = 1000, and the results
are averaged over 100 samples.

We compared the numerical results of the development of the order parameters to the
simulation results. As usual, at the beginning of the learning the overlap between the continuous
vector and the teacher is larger than the discrete one, ρJ > ρW .

5. Finite-size effects

Simulation results in the case of off-line learning under the spherical constraint showed that εg,
the generalization error, is linear in 1/N for any α and N large enough that the second-order
corrections in 1/N are negligible [21]. The learning in the Ising space is characterized by
a cutoff. The one step before perfect learning is well defined where ρ = 1 − 2

N
, or more

generally in the very last steps ρ = 1 − A
N

. Hence, it is possible to calculate the influence
of having a large but finite N . The small generalization error, right before perfect learning,
will be, according to the last argument, εg ∝ a√

N
. The number of steps required for absolute
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Figure 3. The order parameter ρJ is the open triangles in the case of η = 1 and the filled triangles
in the case of η = 0.1. The generalization error εg is the open squares in the case of η = 1 and
the filled ones in the case of η = 0.1. The teacher–student overlap, ρW , is the open circles and the
filled ones in the cases of η = 1 and η = 0.1, respectively. Analytical results are the solid curves.

learning, αf , in finite dimension, is smaller than that predicted by the theory as a result of the
finite-size corrections reflecting the lower generalization error in finite-dimension learning.

In the case of the binary perceptron the generalization error decays super-exponentially
and one can find, as a result, that αf scales as

√
lnN by setting εg = A√

N
in equation (17).

After neglecting higher-order terms one can obtain a very different scaling relation from the
above-mentioned spherical constraint case,

αf ∼ 4π

η(2 − 2
3η)

√
lnN. (31)

In our simulations we determined the number of steps αf in which the overlap between the
clipped student and the teacher was exactly unity, averaged overM(N) training sets. Values of
M(N) ranged from 1000 to 50 in accordance withN , which is varied between 100 and 10 000.
To obtain results in lower dimension, N , we averaged over a larger number of simulations,
M . The obtained values of αf(N, η) are presented in figure 4 as a function of

√
lnN . As

was shown theoretically, the time required to perfect learning αf is linear in
√

lnN . In the
thermodynamic limit N → ∞, αf → ∞ as expected. The slope is determined according to
equation (31) for a given learning rate, η.

The results for three different learning rates are presented in figure 4: the optimal learning
rate η = 1.5, a smaller one η = 1 and a larger one η = 2.5; the slopes are determined
to be 5.9, 6.7 and 10.7, respectively. The simulation results show an agreement with the
predictions of linearity in

√
lnN , although there is a clear influence of higher-order terms.

In the case of a continuous activation function it is also possible to give an estimation of
the number of steps (αN ) required to learn the rule perfectly. In the above-mentioned example
if the constants c1 and c2 as well as the matrix V contain elements that are of the order of unity,
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Figure 4. Average number of steps required for absolute learning versus
√

lnN are plotted in the
case of η = 1.5 (•), η = 1 (◦), η = 2.5 (�). Error bars are not visible at the scale of the figure.
Lines are least-squares fits to numerical data. Dashed lines are the analytical slopes as calculated
in equation (31).

C0 ∼ 1, the estimation holds also for finite but large enough N :

αf ∼ 1

− max(λ1, λ2)
ln

(
ln

(
N

2

))(
1 − 1

2 ln(N2 )

)
. (32)

Both of the eigenvalues λ1 and λ2 are negative and the decay in the limit α → ∞ is dominated
by the larger one. The eigenvalues are proportional to the learning rate as η → 0 and hence
α ∼ 1

η
ln(ln(N2 )), which means that the number of steps required for full learning increases as

η decreases.

6. Discussion

In summary, we have studied the generalization properties of a perceptron with Ising weights
and binary/continuous activation functions in an on-line scenario. The analysis, which is based
on on-line updating of an artificial continuous vector and then clipping it, yields two different
results. The continuous functions, in general, exhibit a very fast decrease of the generalization
error, unlike the case of ‘sign’ activation function, which results in a slower decrease, an
exponential decay.

We demonstrated several ways of using the idea of clipping in order to achieve fast
generalization. We mainly examined two algorithms, clipping according to the continuous
quantities or according to the discrete. Of course one can produce a combination of the
two scenarios. We showed that clipping according to the continuous quantities results at the
beginning with ρW which is smaller than ρJ , but at some point in the learning it overtakes
it. Clipping according to the discrete quantities results at the beginning of the procedure with
over-pay and slow development of both overlaps, ρW , and ρJ . Hence, it is better to alternate
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between different algorithms and the freedom to do this is unique to on-line learning.
The clipping method above can be generalized to any number of values L not just the

Ising (±1) case. The same asymptotic behaviour is achieved [22].
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